Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635884

RESUMO

Oncogenic KRAS impairs anti-tumor immune responses. As effective strategies to combine KRAS inhibitors and immunotherapies have so far proven elusive, a better understanding of how oncogenic KRAS drives immune evasion is needed to identify approaches that could sensitize KRAS-mutant lung cancer to immunotherapy. In vivo CRISPR-Cas9 screening in an immunogenic murine lung cancer model identified mechanisms by which oncogenic KRAS promotes immune evasion, most notably via upregulation of immunosuppressive cyclooxygenase-2 (COX-2) in cancer cells. Oncogenic KRAS potently induced COX-2 in both mouse and human lung cancer, which was suppressed using KRAS inhibitors. COX-2 acted via prostaglandin E2 (PGE2) to promote resistance to immune checkpoint blockade (ICB) in lung adenocarcinoma. Targeting COX-2/PGE2 remodeled the tumor microenvironment by inducing pro-inflammatory polarization of myeloid cells and influx of activated cytotoxic CD8+ T cells, which increased the efficacy of ICB. Restoration of COX-2 expression contributed to tumor relapse after prolonged KRAS inhibition. These results provide the rationale for testing COX-2/PGE2 pathway inhibitors in combination with KRASG12C inhibition or ICB in patients with KRAS-mutant lung cancer.

2.
Cancer Res ; 82(19): 3435-3448, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35930804

RESUMO

Mutations in oncogenes such as KRAS and EGFR cause a high proportion of lung cancers. Drugs targeting these proteins cause tumor regression but ultimately fail to elicit cures. As a result, there is an intense interest in how to best combine targeted therapies with other treatments, such as immunotherapies. However, preclinical systems for studying the interaction of lung tumors with the host immune system are inadequate, in part due to the low tumor mutational burden in genetically engineered mouse models. Here we set out to develop mouse models of mutant KRAS-driven lung cancer with an elevated tumor mutational burden by expressing the human DNA cytosine deaminase, APOBEC3B, to mimic the mutational signature seen in human lung cancer. This failed to substantially increase clonal tumor mutational burden and autochthonous tumors remained refractory to immunotherapy. However, establishing clonal cell lines from these tumors enabled the generation of an immunogenic syngeneic transplantation model of KRAS-mutant lung adenocarcinoma that was sensitive to immunotherapy. Unexpectedly, antitumor immune responses were not directed against neoantigens but instead targeted derepressed endogenous retroviral antigens. The ability of KRASG12C inhibitors to cause regression of KRASG12C -expressing tumors was markedly potentiated by the adaptive immune system, highlighting the importance of using immunocompetent models for evaluating targeted therapies. Overall, this model provides a unique opportunity for the study of combinations of targeted and immunotherapies in immune-hot lung cancer. SIGNIFICANCE: This study develops a mouse model of immunogenic KRAS-mutant lung cancer to facilitate the investigation of optimal combinations of targeted therapies with immunotherapies.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Animais , Citidina Desaminase/genética , Citosina Desaminase/genética , Citosina Desaminase/uso terapêutico , Modelos Animais de Doenças , Receptores ErbB/genética , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/terapia , Camundongos , Antígenos de Histocompatibilidade Menor , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
3.
Sci Adv ; 8(29): eabm8780, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35857848

RESUMO

Recently developed KRASG12C inhibitory drugs are beneficial to lung cancer patients harboring KRASG12C mutations, but drug resistance frequently develops. Because of the immunosuppressive nature of the signaling network controlled by oncogenic KRAS, these drugs can indirectly affect antitumor immunity, providing a rationale for their combination with immune checkpoint blockade. In this study, we have characterized how KRASG12C inhibition reverses immunosuppression driven by oncogenic KRAS in a number of preclinical lung cancer models with varying levels of immunogenicity. Mechanistically, KRASG12C inhibition up-regulates interferon signaling via Myc inhibition, leading to reduced tumor infiltration by immunosuppressive cells, enhanced infiltration and activation of cytotoxic T cells, and increased antigen presentation. However, the combination of KRASG12C inhibitors with immune checkpoint blockade only provides synergistic benefit in the most immunogenic tumor model. KRASG12C inhibition fails to sensitize cold tumors to immunotherapy, with implications for the design of clinical trials combining KRASG12C inhibitors with anti-PD1 drugs.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Inibidores de Checkpoint Imunológico , Interferons , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
4.
Nat Commun ; 12(1): 5906, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625563

RESUMO

Mouse models are critical in pre-clinical studies of cancer therapy, allowing dissection of mechanisms through chemical and genetic manipulations that are not feasible in the clinical setting. In studies of the tumour microenvironment (TME), multiplexed imaging methods can provide a rich source of information. However, the application of such technologies in mouse tissues is still in its infancy. Here we present a workflow for studying the TME using imaging mass cytometry with a panel of 27 antibodies on frozen mouse tissues. We optimise and validate image segmentation strategies and automate the process in a Nextflow-based pipeline (imcyto) that is scalable and portable, allowing for parallelised segmentation of large multi-image datasets. With these methods we interrogate the remodelling of the TME induced by a KRAS G12C inhibitor in an immune competent mouse orthotopic lung cancer model, highlighting the infiltration and activation of antigen presenting cells and effector cells.


Assuntos
Citometria por Imagem/métodos , Oncogenes , Microambiente Tumoral/imunologia , Animais , Anticorpos , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/imunologia , Modelos Animais de Doenças , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Oncogenes/efeitos dos fármacos , Linfócitos T , Microambiente Tumoral/efeitos dos fármacos
5.
EMBO Mol Med ; 12(8): e11987, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32672423

RESUMO

Triple-negative breast cancer (TNBC) has poorer prognosis compared to other types of breast cancers due to the lack of effective therapies and markers for patient stratification. Loss of PTEN tumor suppressor gene expression is a frequent event in TNBC, resulting in over-activation of the PI 3-kinase (PI3K) pathway and sensitivity to its inhibition. However, PI3K pathway inhibitors show limited efficacy as monotherapies on these tumors. We report a whole-genome screen to identify targets whose inhibition enhanced the effects of different PI3K pathway inhibitors on PTEN-null TNBC. This identified a signaling network that relies on both the G protein-coupled receptor for thrombin (PAR1/F2R) and downstream G protein ßγ subunits and also epidermal growth factor receptor (EGFR) for the activation of the PI3K isoform p110ß and AKT. Compensation mechanisms involving these two branches of the pathway could bypass PI3K blockade, but combination targeting of both EGFR and PI3Kß suppressed ribosomal protein S6 phosphorylation and exerted anti-tumor activity both in vitro and in vivo, suggesting a new potential therapeutic strategy for PTEN-null TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Receptores ErbB/genética , Humanos , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase , Receptores Acoplados a Proteínas G , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
6.
Sci Transl Med ; 11(510)2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31534020

RESUMO

KRAS represents an excellent therapeutic target in lung cancer, the most commonly mutated form of which can now be blocked using KRAS-G12C mutant-specific inhibitory trial drugs. Lung adenocarcinoma cells harboring KRAS mutations have been shown previously to be selectively sensitive to inhibition of mitogen-activated protein kinase kinase (MEK) and insulin-like growth factor 1 receptor (IGF1R) signaling. Here, we show that this effect is markedly enhanced by simultaneous inhibition of mammalian target of rapamycin (mTOR) while maintaining selectivity for the KRAS-mutant genotype. Combined mTOR, IGF1R, and MEK inhibition inhibits the principal signaling pathways required for the survival of KRAS-mutant cells and produces marked tumor regression in three different KRAS-driven lung cancer mouse models. Replacing the MEK inhibitor with the mutant-specific KRAS-G12C inhibitor ARS-1620 in these combinations is associated with greater efficacy, specificity, and tolerability. Adding mTOR and IGF1R inhibitors to ARS-1620 greatly improves its effectiveness on KRAS-G12C mutant lung cancer cells in vitro and in mouse models. This provides a rationale for the design of combination treatments to enhance the impact of the KRAS-G12C inhibitors, which are now entering clinical trials.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Sobrevivência Celular/efeitos dos fármacos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Piridonas/farmacologia , Piridonas/uso terapêutico , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , RNA Interferente Pequeno/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
7.
Cancer Cell ; 36(1): 68-83.e9, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31257073

RESUMO

RAC1 P29 is the third most commonly mutated codon in human cutaneous melanoma, after BRAF V600 and NRAS Q61. Here, we study the role of RAC1P29S in melanoma development and reveal that RAC1P29S activates PAK, AKT, and a gene expression program initiated by the SRF/MRTF transcriptional pathway, which results in a melanocytic to mesenchymal phenotypic switch. Mice with ubiquitous expression of RAC1P29S from the endogenous locus develop lymphoma. When expressed only in melanocytes, RAC1P29S cooperates with oncogenic BRAF or with NF1-loss to promote tumorigenesis. RAC1P29S also drives resistance to BRAF inhibitors, which is reversed by SRF/MRTF inhibitors. These findings establish RAC1P29S as a promoter of melanoma initiation and mediator of therapy resistance, while identifying SRF/MRTF as a potential therapeutic target.


Assuntos
Transformação Celular Neoplásica/genética , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Melanoma/etiologia , Melanoma/patologia , Mutação , Proteínas rac1 de Ligação ao GTP/genética , Alelos , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Masculino , Melanócitos/metabolismo , Melanoma/mortalidade , Melanoma/terapia , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Fator de Resposta Sérica , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Pigment Cell Melanoma Res ; 32(2): 280-291, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30277012

RESUMO

The BRAF kinase and the MAPK pathway are targets of current melanoma therapies. However, MAPK pathway inhibition results in dynamic changes of downstream targets that can counteract inhibitor-action not only in during treatment, but also in acquired resistant tumours. One such dynamic change involves the expression of the transcription factor MITF, a crucial regulator of cell survival and proliferation in untreated as well as drug-addicted acquired resistant melanoma. Tight control over MITF expression levels is required for optimal melanoma growth, and while it is well established that the MAPK pathway regulates MITF expression, the actual mechanism is insufficiently understood. We reveal here, how BRAF through action on the transcription factors BRN2 and PAX3 executes control over the regulation of MITF expression in a manner that allows for considerable plasticity. This plasticity provides robustness to the BRAF mediated MITF regulation and explains the dynamics in MITF expression that are observed in patients in response to MAPK inhibitor therapy.


Assuntos
Proteínas de Homeodomínio/metabolismo , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição PAX3/metabolismo , Fatores do Domínio POU/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Sequência de Bases , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/metabolismo , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Receptor Tirosina Quinase Axl
9.
Cell Rep ; 25(13): 3545-3553.e2, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30590030

RESUMO

RAS family GTPases contribute directly to the regulation of type I phosphoinositide 3-kinases (PI3Ks) via RAS-binding domains in the PI3K catalytic p110 subunits. Disruption of this domain of p110α impairs RAS-mutant-oncogene-driven tumor formation and maintenance. Here, we test the effect of blocking the interaction of RAS with p110α on epidermal growth factor receptor (EGFR)-mutant-driven lung tumorigenesis. Disrupting the RAS-PI3K interaction inhibits activation of both AKT and RAC1 in EGFR-mutant lung cancer cells, leading to reduced growth and survival, and inhibits EGFR-mutant-induced tumor onset and promotes major regression of established tumors in an autochthonous mouse model of EGFR-mutant-induced lung adenocarcinoma. The RAS-PI3K interaction is thus an important signaling node and potential therapeutic target in EGFR-mutant lung cancer, even though RAS oncogenes are not themselves mutated in this setting, suggesting different strategies for tackling tyrosine kinase inhibitor resistance in lung cancer.


Assuntos
Receptores ErbB/genética , Neoplasias Pulmonares/genética , Mutação/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/química , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos
10.
Immunity ; 47(6): 1083-1099.e6, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29246442

RESUMO

The immunosuppressive protein PD-L1 is upregulated in many cancers and contributes to evasion of the host immune system. The relative importance of the tumor microenvironment and cancer cell-intrinsic signaling in the regulation of PD-L1 expression remains unclear. We report that oncogenic RAS signaling can upregulate tumor cell PD-L1 expression through a mechanism involving increases in PD-L1 mRNA stability via modulation of the AU-rich element-binding protein tristetraprolin (TTP). TTP negatively regulates PD-L1 expression through AU-rich elements in the 3' UTR of PD-L1 mRNA. MEK signaling downstream of RAS leads to phosphorylation and inhibition of TTP by the kinase MK2. In human lung and colorectal tumors, RAS pathway activation is associated with elevated PD-L1 expression. In vivo, restoration of TTP expression enhances anti-tumor immunity dependent on degradation of PD-L1 mRNA. We demonstrate that RAS can drive cell-intrinsic PD-L1 expression, thus presenting therapeutic opportunities to reverse the innately immunoresistant phenotype of RAS mutant cancers.


Assuntos
Antígeno B7-H1/imunologia , Neoplasias Colorretais/imunologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/imunologia , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Tristetraprolina/imunologia , Evasão Tumoral , Animais , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Clivagem do RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Transdução de Sinais , Tristetraprolina/genética
11.
PLoS One ; 10(9): e0139074, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413866

RESUMO

Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Técnicas de Genotipagem , Neoplasias Pulmonares/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Células Clonais , DNA de Neoplasias/genética , Formaldeído , Frequência do Gene/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inclusão em Parafina , Temperatura , Fixação de Tecidos
12.
Cancer Cell ; 20(6): 715-27, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22169110

RESUMO

We show that imatinib, nilotinib, and dasatinib possess weak off-target activity against RAF and, therefore, drive paradoxical activation of BRAF and CRAF in a RAS-dependent manner. Critically, because RAS is activated by BCR-ABL, in drug-resistant chronic myeloid leukemia (CML) cells, RAS activity persists in the presence of these drugs, driving paradoxical activation of BRAF, CRAF, MEK, and ERK, and leading to an unexpected dependency on the pathway. Consequently, nilotinib synergizes with MEK inhibitors to kill drug-resistant CML cells and block tumor growth in mice. Thus, we show that imatinib, nilotinib, and dasatinib drive paradoxical RAF/MEK/ERK pathway activation and have uncovered a synthetic lethal interaction that can be used to kill drug-resistant CML cells in vitro and in vivo.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Pirimidinas/farmacologia , Quinases raf/metabolismo , Substituição de Aminoácidos , Animais , Antineoplásicos/uso terapêutico , Apoptose , Benzamidas/uso terapêutico , Linhagem Celular Tumoral , Dasatinibe , Sinergismo Farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Genes ras , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Pirimidinas/uso terapêutico , Tiazóis/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Res ; 70(20): 8036-44, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20807807

RESUMO

Oncogenic BRAF is a critical driver of proliferation and survival and is thus a validated therapeutic target in cancer. We have developed a potent inhibitor, termed 1t (CCT239065), of the mutant protein kinase, (V600E)BRAF. 1t inhibits signaling downstream of (V600E)BRAF in cancer cells, blocking DNA synthesis, and inhibiting proliferation. Importantly, we show that 1t is considerably more selective for mutated BRAF cancer cell lines compared with wild-type BRAF lines. The inhibitor is well tolerated in mice and exhibits excellent oral bioavailability (F = 71%). Suppression of (V600E)BRAF-mediated signaling in human tumor xenografts was observed following oral administration of a single dose of 1t. As expected, the growth rate in vivo of a wild-type BRAF human tumor xenograft model is unaffected by inhibitor 1t. In contrast, 1t elicits significant therapeutic responses in mutant BRAF-driven human melanoma xenografts.


Assuntos
Melanoma/genética , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas B-raf/genética , Administração Oral , Substituição de Aminoácidos , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Divisão Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Hibridização de Ácido Nucleico , Fosforilação , Transplante Heterólogo
14.
PLoS One ; 3(7): e2734, 2008 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-18628967

RESUMO

The Microphthalmia-associated transcription factor (MITF) is an important regulator of cell-type specific functions in melanocytic cells. MITF is essential for the survival of pigmented cells, but whereas high levels of MITF drive melanocyte differentiation, lower levels are required to permit proliferation and survival of melanoma cells. MITF is phosphorylated by ERK, and this stimulates its activation, but also targets it for degradation through the ubiquitin-proteosome pathway, coupling MITF degradation to its activation. We have previously shown that because ERK is hyper-activated in melanoma cells in which BRAF is mutated, the MITF protein is constitutively down-regulated. Here we describe another intriguing aspect of MITF regulation by oncogenic BRAF in melanoma cells. We show oncogenic BRAF up-regulates MITF transcription through ERK and the transcription factor BRN2 (N-Oct3). In contrast, we show that in melanocytes this pathway does not exist because BRN2 is not expressed, demonstrating that MITF regulation is a newly acquired function of oncogenic BRAF that is not performed by the wild-type protein. Critically, in melanoma cells MITF is required downstream of oncogenic BRAF because it regulates expression of key cell cycle regulatory proteins such as CDK2 and CDK4. Wild-type BRAF does not regulate this pathway in melanocytes. Thus, we show that oncogenic BRAF exerts exquisite control over MITF on two levels. It downregulates the protein by stimulating its degradation, but then counteracts this by increasing transcription through BRN2. Our data suggest that oncogenic BRAF plays a critical role in regulating MITF expression to ensure that its protein levels are compatible with proliferation and survival of melanoma cells. We propose that its ability to appropriate the regulation of this critical factor explains in part why BRAF is such a potent oncogene in melanoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/fisiologia , Proteínas Proto-Oncogênicas B-raf/fisiologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Melanócitos/citologia , Transdução de Sinais , Transcrição Gênica
15.
Mol Cell ; 20(6): 963-9, 2005 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16364920

RESUMO

The protein kinase B-RAF is mutated in approximately 7% of human cancers. Most mutations are activating, but, surprisingly, a small number have reduced kinase activity. However, the latter can still stimulate cellular signaling through the MEK-ERK pathway because they activate the related family member C-RAF. We examine the mechanism underlying C-RAF activation by B-RAF. We show that C-RAF is activated in the cytosol in a RAS-independent manner that requires activation segment phosphorylation and binding of 14-3-3 to C-RAF. We show that wild-type B-RAF forms a complex with C-RAF in a RAS-dependent manner, whereas the mutants bind independently of RAS. Importantly, we show that wild-type B-RAF can also activate C-RAF. Our data suggest that B-RAF activates C-RAF through a mechanism involving 14-3-3 mediated heterooligomerization and C-RAF transphosphorylation. Thus, we have identified a B-RAF-C-RAF-MEK-ERK cascade that signals not only in cancer but also in normal cells.


Assuntos
Isoenzimas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Conformação Proteica , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas 14-3-3/metabolismo , Comunicação Autócrina , Citoplasma/enzimologia , Dimerização , Ativação Enzimática , Substâncias de Crescimento/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Modelos Moleculares , Complexos Multiproteicos , Mutação , Neoplasias/enzimologia , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas ras/genética , Proteínas ras/metabolismo
16.
Clin Cancer Res ; 10(3): 1180-91, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14871998

RESUMO

PURPOSE: Expression of aminopeptidase N/CD13 can be detected in several solid tumor types. Thus far, the role of CD13 in ovarian cancer has not been studied. We have investigated the expression pattern and biological function of CD13 in ovarian cancer. EXPERIMENTAL DESIGN: First, we studied the expression of CD13 in ovarian cancer tissue of 15 patients representing three different histological types (5 patients each) by immunohistochemistry. We then stably transfected the IGROV-1 human ovarian cancer cell line with a CD13 expression vector and examined the biological effect of CD13 in vitro and in vivo. RESULTS: The expression of CD13 in ovarian cancer was associated with the histological subtype: CD13 expression in tumor cells was observed in 80-100% of the patients with a serous or mucinous carcinoma and in only 20% of the clear cell carcinoma patients. In all patients' tumor samples, CD13-positive blood vessels were present. CD13 overexpression in IGROV-1 cells did not affect in vitro cell growth and sensitivity to doxorubicin, cisplatin, or gemcitabine. CD13 overexpression reduced invasion in Matrigel, which appeared to be independent of the aminopeptidase activity of CD13. Furthermore, the growth rate of IGROV-1/CD13 xenografts was reduced. The area of the vessel lumens was enlarged in a small percentage of vessels in the CD13-overexpressing xenografts. In addition, the CD13-overexpressing tumors were less sensitive to cisplatin. CONCLUSIONS: CD13 is expressed in tumor as well as endothelial cells in human ovarian cancer. Our results suggest that CD13 overexpression affects ovarian cancer growth, vascular architecture, and response to chemotherapy. Further elucidation of the mechanism of the observed effects of CD13 is warranted to better understand its role in the pathophysiology of ovarian cancer.


Assuntos
Antígenos CD13/biossíntese , Cisplatino/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma Mucinoso/metabolismo , Aminopeptidases/metabolismo , Animais , Apoptose , Adesão Celular , Divisão Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Colágeno/farmacologia , Cistadenocarcinoma Seroso/metabolismo , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Feminino , Humanos , Imuno-Histoquímica , Laminina/farmacologia , Camundongos , Camundongos Nus , Transplante de Neoplasias , Plasmídeos/metabolismo , Proteoglicanas/farmacologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fase S , Fatores de Tempo , Transfecção
17.
Thromb Haemost ; 90(5): 921-9, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14597989

RESUMO

The aminopeptidase inhibitor bestatin has been shown to have anti-angiogenic effects in a number of model systems. These effects are thought to result from inhibition of CD13 activity. Because tumor angiogenesis can evolve in a fibrin-rich stroma matrix we have studied for the first time the effects of bestatin on microvascular endothelial capillary-like tube formation in a fibrin matrix. Bestatin enhanced the formation of capillary-like tubes dose-dependently. Its effects were apparent at 8 micro M; the increase was 3.7-fold at 125 micro M; while high concentrations (>250 micro M), that were shown to have anti-angiogenic effects in other systems, caused extensive matrix degradation. Specific CD13-blocking antibodies WM15 and MY-7, and the aminopeptidase inhibitors amastatin and actinonin also enhanced capillary-like tube formation (maximally 1.5-fold), but these effects did not reach statistical significance. The effect of bestatin was not due to a change in uPAR availability because the relative involvement of the u-PA/u-PAR activity was not altered by bestatin. In view of the present findings we hypothesize that aminopeptidases other than CD13 predominantly contribute to the observed pro-angiogenic effect of bestatin in a fibrin matrix. The identification of this novel effect of bestatin is important in the light of the proposed use of bestatin as anti-angiogenic and/or anti-tumor agent.


Assuntos
Aminopeptidases/antagonistas & inibidores , Endotélio Vascular/efeitos dos fármacos , Fibrina/metabolismo , Leucina/análogos & derivados , Leucina/farmacologia , Antígenos CD13/análise , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Humanos , Integrinas/efeitos dos fármacos , Microcirculação/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Receptores de Superfície Celular/fisiologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Veias Umbilicais , Ativador de Plasminogênio Tipo Uroquinase/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...